

Towards Open-Domain Conversational AI

YUN-NUNG (VIVIAN) CHEN 陳溫儂 HTTP://VIVIANCHEN.IDV.TW

Iron Man (2008)

What can machines achieve now or in the future?

Language Empowering Intelligent Assistants

Apple Siri (2011)

Google Now (2012) Google Assistant (2016)

Microsoft Cortana (2014)

Message Us

Facebook M & Bot (2015)

Google Home (2016) Apple HomePod (2017)

Why and When We Need?

- "I want to chat"
- "I have a question"
- "I need to get this done" "What should I do?"

- What is today's agenda?
- What does SLT stand for?
- Book me the flight ticket from Taipei to Athens
- Reserve a table at Din Tai Fung for 5 people, 7PM tonight
- Is SLT conference good to attend?

Intelligent Assistants

⁵ Task-Oriented Dialogue Systems

JARVIS – Iron Man's Personal Assistant

Baymax – Personal Healthcare Companion

Task-Oriented Dialogue Systems (Young, 2000)

Task-Oriented Dialogue Systems (Young, 2000)

Language Understanding (LU)

0 1

ToLoc

Joint Semantic Frame Parsing

Slot Filling

Intent Prediction

Joint Model Comparison

	Attention Mechanism	Intent-Slot Relationship
Joint bi-LSTM	Х	Δ (Implicit)
Attentional Encoder-Decoder	\checkmark	Δ (Implicit)
Slot Gate Joint Model	V	√ (Explicit)

Slot-Gated Joint SLU (Goo et al., 2018)

■ Slot Gate $g = \sum v \cdot \tanh(c_i^S + W \cdot c^I)$ ■ Slot Prediction $y_i^S = softmax(W^S(h_i + c_i^S) + b^S)$ ■ Slot Prediction $y_i^S = softmax(W^S(h_i + c_i^S) + b^S)$

 $oldsymbol{g}$ will be larger if slot and intent are better related

- c_i^S : slot context vector c^I : intent context vector W: trainable matrix v: trainable vector
- g : scalar gate value

Contextual Language Understanding

E2E MemNN for Contextual LU (Chen et al., 2016)

Role-Based & Time-Aware Attention (Su et al., 2018)

Task-Oriented Dialogue Systems (Young, 2000)

Dialogue Policy Optimization

E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

Idea: SL for each component and RL for end-to-end training the neural dialogue system

Reinforcement Learning Agent (Li et al., 2017)

User goal - Two tickets for "Deadpool" tomorrow 9PM at AMC Pacific Place 11 theater, Seattle.

RULE BASED SYSTEM

User: Do you have any ticket for movie 'Deadpool' at 9:00 pm? Agent: Which theater do you want? User: AMC pacific place 11 theater, please! Agent: How many tickets do you want? User: Two! Agent: What date? User: Tomorrow! Agent: Which city do you want? User: Seattle! Agent: Do you have any specification for zip code? User: No. I do not care. Agent: Do you have any distance constraint? User: No. I do not care. Agent: How about video format? 2d? Imax 3d? no notion about what User: Any kind is okay. requests can be skipped Agent: Do you have any constraint to price?

REINFORCEMENT LEARNING SYSTEM

User: I want two tickets for movie 'Deadpool'. Agent: What is the starttime you prefer? User: 9:00 PM Agent: Which day? User: Tomorrow Agent: Which city? User: Seattle Agent: Which theater do you prefer? User: AMC Pacific Place 11 theater. Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC pacific place 11 theater, Seattle, movie 'Deadpool'. User: Okay, thanks. Agent: Thanks!

Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC pacific place 11 theater, Seattle, movie 'Deadpool'.

User: Okay, thanks. Agent: Thanks!

User: No!

Skip the requests the user may not care about to improve efficiency

RL in Dialogue Systems

- 1. Sample inefficient, hard to design reward function, local optima...
- 2. Real users are expensive
- 3. Discrepancy between real users and simulators

D3Q: Discriminative Deep Dyna-Q (Su et al., 2018)

🗆 Idea

- learning with real users with planning
- add a discriminator to filter out the bad experiences

D3Q: Discriminative Deep Dyna-Q (Su et al., 2018)

The policy learning is more robust and shows the improvement in human evaluation

Task-Oriented Dialogue Systems (Young, 2000)

Natural Language Generation (NLG)

Mapping dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant

Issues in Neural NLG

Issue

NLG tends to generate shorter sentences

NLG may generate grammatically-incorrect sentences

Solution

- Generate word patterns in a order
- Consider linguistic patterns

Hierarchical NLG w/ Linguistic Patterns (Su et al., 2018)

Evolution Roadmap

Dialogue breadth (coverage)

Dialogue Systems

Neural Response Generation (Sordoni et al., 2015; Vinyals & Le, 2015)

Issue 1: Blandness Problem

MMI for Response Diversity (Li et al., 2016)

Issue 2: Response Inconsistency

message	Where do you live now?	message	How old are you?
response	I live in Los Angeles.	response	16 and you?
message	In which city do you live now?	message	What's your age?
response	I live in Madrid.	response	18.
message	In which country do you live now?	message	What is your major?
response	England, you?	response	I'm majoring in psychology
message	Where were you born?	message	What did you study in college?
response	I was born in Canada.	response	English lit.
message	Where are you from?		
response	England, you?		
message	Where did you grow up?		
response	I grew up in Texas.		

Personalized Response Generation (Li et al., 2016)

Persona Model for Speaker Consistency (Li et al., 2016)

Baseline model \rightarrow inconsistency

Persona model using speaker embedding \rightarrow consistency

message	Where is your hometown?	message	Where is your hometown?
response	I live in Indonesia.	response	I'm from England.
message	Where are you from?	message	Where are you from?
response	England, you?	response	I'm from England.
message	In which city do you live now?	message	In which city do you live now?
response	I live in Jakarta.	response	I live in London.
message	In which country do you live now?	message	In which country do you live now?
response	I live in Indonesia.	response	I live in England.
message	What is your major?	message	What is your major?
response	Business, you?	response	Business. You?
message	What did you study in college?	message	What did you study in college?
response	Psychology, you?	response	I did business studies.
message	How old are you?	message	How old are you?
response	I'm 18.	response	I'm 18.
message	What is your age?	message	What is your age?
response	I'm <mark>16.</mark>	response	I'm 18.

Issue 3: Dialogue-Level Optimization via RL

Deep RL for Response Generation (Li et al., 2016)

Input message	Supervised Learning Agent	Reinforcement Learning Agent
How old are you ?	I'm 16.	I'm 16, why are you asking ?
What's your full name ?	I have no idea .	What's yours ?
I don't want to go home tonight.	Really ?	Why?
Do you have any feelings for me?	I don't know what you are talking about.	I don 't want to hurt your feelings .
How much time do you have here?	Not long enough. Sorry, sir.	Ten seconds .
Shall we get started ?	Of course !	Yes. We 've got a lot of work to do here.
Do you play football ?	No, i don't	Yes. I love football !
We'd have to talk to him.	I mean, he's a good guy	About what ?
How come you never say it?	Because I don't want to hurt you .	I don 't think it 's a good idea to say it.

- RL agent generates more *interactive* responses
- RL agent tends to end a sentence with a question and hand the conversation over to the user

Issue 4: No Grounding (Sordoni et al., 2015; Li et al., 2016)

Neural model learns the general shape of conversations, and the system output is situationally <u>appropriate</u> and <u>coherent</u>. No grounding into a real calendar, but the "shape" of the conversation is fluent and plausible.

 H: hi M: how are you? H: not bad M: what's wrong? H: nothing really M: wanna talk about it? i 'm here if you wanna talk H: well, i'm just tired 	 H: would thursday afternoon work sometime? M: yeah , sure . just let me know when you're free. H: after lunch is probably the best time M: okay, sounds good . just let me know when you're free. H: would 2 pm work for you? M: works for me. H: well let's say 2 pm then i 'll see you there M: sounds good
M: me too, i'm here if you wanna talk	M: sounds good.

Knowledge-Grounded Responses (Ghazvininejad et al., 2017)

Conversational Agents

Evolution Roadmap

Dialogue breadth (coverage)

High-Level Intention Learning (Sun et al., 2016; Sun et al., 2016)

High-level intention may span several domains

Users interact via high-level descriptions and the system learns how to plan the dialogues

Empathy in Dialogue System (Fung et al., 2016)

- Embed an empathy module
 - Recognize emotion using multimodality
 - Generate emotion-aware responses

Made with love by tvo Technologies in collaboration with Hong Kong University of Science and Technology

Face recognition output

(index):1728

Zara - The Empathetic Supergirl

Challenge Summary

The human-machine interface is a hot topic but several components must be integrated!

- Most state-of-the-art technologies are based on DNN
- •Requires huge amounts of labeled data
- •Several frameworks/models are available

Fast domain adaptation with scarse data + re-use of rules/knowledge

Handling reasoning and personalization

Data collection and analysis from un-structured data

Complex-cascade systems requires high accuracy for working good as a whole

Her (2013)

What can machines achieve now or in the future?

⁴⁸ Thanks for Your Attention!

Q & A

Yun-Nung (Vivian) Chen Assistant Professor National Taiwan University y.v.chen@ieee.org / http://vivianchen.idv.tw